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ABSTRACT 

 
Multispectral data can meet many of the information requirements of site-specific farming.  
Examples from the literature are presented where multispectral data has been applied to 
agricultural management problems.  Some of the examples are illustrated using remotely 
sensed estimates of green leaf area index for a cotton field during the 1994 growing season. 
 

INTRODUCTION 
 

 Remote sensing has shown potential for use in agricultural management for a 
number of years; however, the availability of fine spatial resolution, near real-time data has 
limited its application in the past (Jackson, 1984).  New companies that provide aircraft-
based imagery to meet the resolution and temporal requirements for agricultural 
management are now emerging.  The promise of commercially available, high-resolution 
satellite imagery will also provide additional sources of remotely sensed data (Fritz, 1996). 
 Advances in precision farming technology (GIS, global positioning systems, and 
variable rate equipment) provide the tools needed to apply information from multispectral 
images to management problems.  There is still considerable work to be done before the 
full benefits of remotely sensed data can be realized, but there are applications that can 
benefit from this data at the present time.  The purpose of this paper is to provide an 
overview of how remotely sensed data can be utilized in site-specific agricultural 
management. 

 
Vegetation Spectral Response 

 
 Digital imagery is obtained in distinct areas of the electromagnetic spectrum.  
Sensors used in vegetation monitoring are typically in the green, red, and near infrared 
portions of the spectrum.  The importance of these spectral areas is illustrated by the high-
resolution spectral response for a cotton canopy at different stages of development in Fig. 
1.  As the canopy develops, there is a definite increase in reflectance in the near-infrared 
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(~725 to 900 nm), as the internal leaf structure of the plant reflects more of the energy in 
this portion of the spectrum compared to a bare soil.  There is also a development of a 
green peak (~ 550 nm) and decrease in red reflectance (~650 to 690 nm) due to 
chlorophyll reflectance and absorption respectively.  Thermal imagery (8,000 to 12,000 
nm) has also been proven useful in monitoring vegetation, as this imagery can be used to 
determine surface temperature.  Any stress which lessens a crop’s transpiration ability will  
result in a relative increase in the surface temperature of the leaves.  Additional factors 
which impact the spectral response of crops to stress are presented by Jackson et al. 
(1986). 
 
 The spectral response of vegetation has been used to formulate several vegetation 
indices, such as the Soil Adjusted Vegetation Index (SAVI, Huete, 1988) expressed as 
 

 SAVI
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NIR RED L
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where L is a dimensionless constant, and NIR and RED near-infrared and red reflectance, 
respectively.  A good introduction to the interpretation of vegetation indices is provided by 
Jackson and Huete (1991), and the functional relationship between different indices is 
reviewed by Perry and Lautenschlager (1984).  Vegetation indices are often well 
correlated with measures of plant density; as a crop's canopy develops, less bare soil is 
apparent, and thus a decrease occurs in red reflectance with an increase in NIR 
reflectance. 
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Fig. 1.  High-resolution reflectance spectra for both a bare soil and a 
cotton canopy on different dates.  Measurements of green leaf area 
index (LAI) are shown for the dates the spectra were acquired. 



 
 
Previous Applications of Remote Sensing for Farm Management with Implications 

to Site-Specific Agricultural Management 
 
 Several methods have been developed to assess both soil and crop conditions 
using multispectral imagery.  Some studies using remote sensing for soil properties, pest 
detection, and water stress are presented in the following sections. 
 
Soil Properties 
 
 Soil physical properties such as organic matter have been correlated to specific 
spectral responses (Dalal and Henry, 1986; Shonk et al., 1991).  Therefore, multispectral 
images have shown potential for the automated classification of soil mapping units (Leone 
et al., 1995).  Such direct applications of remote sensing for soil mapping are limited 
because several other variables can impact soil reflectance such as tillage practices and 
moisture content.  However, bare soil reflectance could have an indirect application in 
interpolating the results of gridded soil samples.  For example, Fig. 2 shows a gray-scale 
image in the red portion of the spectrum.  Percent sand and clay in the top 30 cm of the soil 
horizon is displayed over the approximate location of point samples taken by Post et al. 
(1988).  Note that the brighter portions of the image correspond to areas of high sand 
content. 

 
Fig. 2.  Gray-scale image of a fallow field in the red portion of the spectrum with point 

measurements of percent sand and clay shown over the approximate sampling 
locations. 
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Vegetation spectral response has also been used to infer other soil conditions.  Wiegand et 
al. (1994) showed a vegetation index was useful in mapping soil salinity over a sugar cane 
field.  The nitrogen status of crops has also been estimated using remotely sensed data 
(Blackmer et al., 1995; Filella et al., 1995). Yang and Anderson (1996) describe methods 
to utilize multispectral images of vegetated fields for the determination of within-field 
management zones for application to site-specific farming. 
 
Pest Detection 
 
 Sprayer mounted sensors have been found useful for the control of herbicide 
applications (such as Shearer and Jones,  1991).  Brown and Steckler (1995) developed a 
method to use digitized color-infrared photographs to classify weeds in a no-till corn field.  
The classified data were placed in a GIS and a decision support system was then used to 
determine the appropriate herbicide and amount to apply.  Penuelas et al. (1995) used 
reflectance measurements to assess mite effects on apple trees.  Powdery mildew has also 
shown to be detectable with reflectance measurements in the visible portion of the 
spectrum (Lorenzen and Jensen, 1989).  The ability to detect and map insect damage with 
remotely sensed imagery implies that methods can be developed to focus pesticide 
applications in the areas of fields most infected, thus decreasing the damage to beneficial 
insects. 
 
Water Stress 
 
 The difference between remotely sensed surface temperature and ground-based 
measurement of air temperature has been established as a method to detect water stress in 
plants (Jackson et al., 1981).  More recently, methods to integrate spectral vegetation 
indices with temperature have been used to improve remotely-sensed estimates of 
evapotranspiration (Carlson et al., 1995; Moran et al., 1994).  Moran et al. (1994) defined 
a Water Deficit Index which uses the response of a vegetation index to account for partial 
canopy conditions, so that false indications of water stress due to high soil background 
temperatures were minimized.  Spectral indices have also been used to determine "real-
time" crop coefficients to improve irrigation scheduling (Bausch, 1995). 
 

EXAMPLE DATA SET 
 
 Some of the capabilities of multispectral images are illustrated using a subset of 
data from the Multispectral Airborne Demonstration at Maricopa Agricultural Center 
(MADMAC) conducted during the summer growing season in Arizona (Moran et al, 
1996).  Images were acquired in four spectral bands (green, red, near-infrared and 
thermal) at a spatial resolution of 2 m, from April to October, 1994.  The data presented 
here correspond to a field planted with two varieties of an upland cotton (Gossypium 
hirsutum L.) on April 5, 1994.  The field was used in studies of irrigation efficiency by 
Watson (J.W. Watson, 1994, personal communication), and was divided into 12 irrigation 
borders.  The irrigation levels and border layout are pictured in Fig. 3. 



 
Fig. 3.  Field layout and irrigation levels of a cotton field at Maricopa, AZ, in 1994. 
 

 The near-infrared and red images were calibrated to units of reflectance and then 
the SAVI was calculated.  The SAVI was further modified to units of green leaf area index 
(LAI) using an empirically derived relationship (Moran, et al., 1996), where 
 
 LAI = -3.45 ln(1 - SAVI) - 0.58. (2) 
 
Gray-scale representations of the LAI over the cotton field for different dates in 1994 are 
pictured in Fig. 4.  Darker shades of gray represent higher values of LAI.  The maximum 
LAI was 4.9 and occurred in the August 2 image.  The average field conditions for the 
dates shown in Fig. 4 are listed in Table 1. 
 
 The first point of interest in Fig. 4 is the center and lower right hand portion of the 
field that had a consistently lower LAI throughout the season.  Similar patterns were visible 
in images from previous years.  It is likely that this response was due to a higher sand 
content than that of the surrounding portions of the field, indicating precision applications of 
herbicide and fertilizers may be advantageous.  The tendency of the southern portion of the 
field to have a lower LAI, especially early in the season, may be an indication of non-
uniform irrigation applications or variation in soil type.  The impact of the different irrigation 
levels on LAI was evident by August 2 (irrigation levels were essentially the same until July 
9). 
 The images indicated LAI reached its maximum value for most of the field on 
August 2.  Beginning August 16, LAI decreased, which is also the time white fly and leaf 
perforator damage was first observed in the field.  The damage appeared to begin on the 
eastern side of the field and spread to the west as indicated by the more rapid decrease in 
LAI in the east for later dates (note that defoliant was not applied until September 9). 
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Fig. 4.  Remotely sensed estimates of leaf area index (LAI) over the cotton field
    with the irrigation treatments shown in Fig. 3 for ten days during 1994.
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Table 1.  Average field conditions corresponding to the dates of each image in Fig. 4. 
 Percent Average Growth 

Date Cover Height (cm) Stage 
 

7 June 
 

25 
 

25 
 

15-Leaf 
14 June 30 30 Flowering 
6 July 50 30  
12 July 80 50  
21 July 80 70  

2 August 95 85  
16 August 100 100 Mature Bolls 
23 August 100 100  
31 August 100 100  

8 September 100 100  
 
 From this example, it can be seen that multispectral images of red and NIR 
reflectance are useful for monitoring changes in vegetation patterns and development.  It 
should be noted that the data presented in Fig. 4 were based on images calibrated to units 
of reflectance (that is, sensor characteristics and solar illumination conditions have been 
accounted for).  Without this calibration, temporally-consistent estimates of LAI would not 
have been possible. 
 

FUTURE POSSIBILITIES 
 
 Several applications have been developed to use remotely sensed data to infer 
both plant and soil characteristics.  Three approaches of development appear to be 
emerging in the application of remote sensing and site-specific agriculture.  In one 
approach, multispectral images are used for anomaly detection; however, anomaly 
detection does not provide quantitative recommendations that can be directly applied to 
precision farming.  A second approach involves correlating variation in spectral response to 
specific variables such as soil properties or nitrogen deficiency.  For example, in the case of 
nitrogen deficiency, once site-specific relationships have been developed, multispectral 
images can then be translated directly to maps of fertilizer application rates. 
 The third approach is converting multispectral data to quantitative units with 
physical meaning (such as LAI or temperature) and integrating this information into 
physically based growth models.  For example, Moran et al. (1995) utilized remotely 
sensed estimates of LAI and evapotranspiration as inputs to a simple alfalfa growth model.  
The remotely sensed estimates were used to adjust the model’s parameters throughout the 
season and resulted in improved predictions.  Other applications of growth models with 
remotely sensed data are under development (Mougin et al., 1995; Carbone et al., 1996).  
Using remotely sensed inputs to growth models also provides a means to obtain predictions 
over large areas, which will increase the application of these models to site-specific 
agricultural management. 



 The latter two approaches have potential for incorporating remote sensing into 
decision support systems in a geographical information system environment (for example, 
Brown and Steckler, 1995).  Further development will ultimately allow farm managers to 
make informed decisions about site-specific applications of farm materials. 
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